XX Indices

Index laws

Laws that define how to deal with exponents in algebra.

Multiplication

am×an=am+na^{m} \times a^{n} = a^{m+n}

Division

am÷an=amna^{m} \div a^{n} = a^{m-n}

Powers

(a4)3=a4×a4×a4(a^{4})^{3} = a^{4} \times a^{4} \times a^{4}
=a4+4+4= a^{4+4+4} =a4×3=a12= a^{4 \times 3} = a^{12}

(am)n=amn(a^{m})^{n} = a^{mn}
(ab)n=anbn(ab)^{n} = a^{n} b^{n}

xm+1×xm1=x2mx^{m+1} \times x^{m-1} = x^{2m}

Fractions

Since a12×a12=a1=aa^{\frac 1 2} \times a^{\frac 1 2} = a^{1} = a it follows that a12=a2a^{\frac 1 2} = \sqrt[2]{a}.

amn=amna^{\frac m n} = \sqrt[n]{a^{m}}

a0.25=a14=a4a^{0.25} = a^{\frac 1 4} = \sqrt[4]{a}

These may sometimes require to be simplified:

x3112=x3112x^{\frac{31}{12}} = \sqrt[12]{x^{31}}

Since 1212 goes into 3131 two times, and the remainder is 77:

x2412×x712\Rarr \sqrt[12]{x^{24}} \times \sqrt[12]{x^{7}}

And since the former factor simplifies further into x2x^{2}, it follows that

x3112=x2x712\sqrt[12]{x^{31}} = x^{2}\sqrt[12]{x^{7}}

Zero Indices

an÷an=ann=a0a^{n} \div a^{n} = a^{n-n} = a^{0}

So a0=an÷ana^{0} = a^{n} \div a^{n}, also, since every number divided by itself results in 1, it follows that a0=1a^{0} = 1.

00=0^{0} = undefined

Negative Indices

a1a^{-1} is equal to the reciprocal of aa

an=1ana^{-n} = \frac{1}{a^{n}}

2a3=2a32a^{-3} = \frac{2}{a^{3}}

a12=1a2a^{-\frac 1 2 } = \frac{1}{\sqrt[2]{a}}

1a1=a\frac {1}{a^{-1}} = a

(1x)1=x1=x(\frac 1 x)^{-1} = \frac x 1 = x

(ab)c=bcac(\frac a b)^{-c} = \frac{b^{c}}{a^{c}}

Notes

Careful with negative numbers:

42(4)2-4^2 \ne (-4)^2 because
42=(42)-4^2 = -(4^2)